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Abstract. The dynamics of the reduced density matrix of the driven dissipative two-state system is studied
for a general diagonal/off-diagonal initial state. We derive exact formal series expressions for the popula-
tions and coherences and show that they can be cast into the form of coupled nonconvolutive exact master
equations and integral relations. We show that neither the asymptotic distributions, nor the transition
temperature between coherent and incoherent motion, nor the dephasing rate and relaxation rate towards
the equilibrium state depend on the particular initial state chosen. However, in the underdamped regime,
effects of the particular initial preparation, e.g. in an off-diagonal state of the density matrix, strongly affect
the transient dynamics. We find that an appropriately tuned external ac-field can slow down decoherence
and thus allow preparation effects to persist for longer times than in the absence of driving.

PACS. 05.30.-d Quantum statistical mechanics – 05.40.-a Fluctuation phenomena, random processes,
noise and Brownian motion – 33.80.Be Level crossing and optical pumping

1 Introduction

The dissipative two-state system (TSS) can model a great
variety of physical and chemical situations. The case in
which the TSS is a spin 1/2 particle interacting with a
heat bath is encountered in the context of spin magnetic
resonance and relaxation [1]. A more general class con-
cerns double-well systems where only the ground states of
the two wells are occupied. The dissipative TSS can de-
scribe, e.g., hydrogen tunneling in condensed media [2],
tunneling of atoms between an atomic-force microscope
tip and a surface [3], or of the magnetic flux in a rf-SQUID
[4]. Recent experiments on submicrometer Bi wires have
measured transition rates of two-level systems coupled to
conduction electrons [5,6]. This model has been also ap-
plied to describe nonadiabatic chemical reactions in the
condensed phase, such as electron transfer [7–11] or pro-
ton transfer reactions [12,13]. In these particular cases,
the TSS describes the electronic or protonic motion be-
tween two diabatic potential energy surfaces. When the
polarization of the fictitious spin is bilinearly coupled to
a harmonic bath, one ends up with the so-termed spin-
boson model [14–16]. For a symmetric bistable potential
this problem is analogous to that of a spin 1/2 in a con-
stant magnetic field in the x direction and with environ-
mental fluctuating fields in the z direction, cf. e.g. [14].
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The analogy holds also for an asymmetric double well
potential under appropriate rotation of the “spin” axes.

In the spin-boson literature, the particle is usually pre-
pared in a localized diagonal state of the reduced density
matrix (RDM). In fact, if this initial condition is chosen,
the dissipative TSS is a paradigm to investigate the in-
terplay between quantum coherence phenomena and en-
vironmental influences. The coupling to the environment
results in a reduction of the coherent tunneling motion by
incoherent processes [14–16], and may lead to a transition
to localization at zero temperature [17]. Finally, when the
system is additionally subject to time-dependent external
forces, diverse remarkable effects occur [18]. In the ab-
sence of coupling to a heat bath, complete destruction of
tunneling can be induced by a coherent driving field with
appropriately chosen frequency and amplitude [19,20]. In
the presence of dissipation, this effect can still persist for
many tunneling periods [21–24]. The transition tempera-
ture above which quantum coherence is destroyed by bath
fluctuations is modified by a driving field [22–24]. Other
aspects concern, e.g., the possibility to control a priori
the proton or electron transfer by an electric field [25,26],
or the phenomenon of driving-induced large-amplitude co-
herent oscillations [27–31].

Here we study the reduced dynamics for arbitrary dia-
gonal/off-diagonal initial preparation. Within the path-
integral method, a set of exact equations for the elements
of the RDM are obtained. In particular, the diagonal
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elements of the RDM satisfy a closed generalized (non-
Markovian) master equation (GME) in which the par-
ticular initial preparation is in the inhomogeneity. Dif-
ferent approximations covering the interesting parameter
regimes of temperature and bath coupling are discussed.
We show that the asymptotic dynamics is independent of
the particular initial state. However, preparation effects
related to nonzero off-diagonal elements of the initial re-
duced density matrix are crucial at short times whenever
the dynamics exhibits underdamped coherent oscillations.
We address several features of the dissipative dynamics
which are sensitive to this initial state. In particular, we
show that a suitably tuned ac-field can slow down the
decoherence induced by the environment, so that prepa-
ration effects can survive on a longer time-scale than in
the absence of driving.

The “initial density matrix problem” is well known in
the context of spin magnetic resonance and relaxation.
Among the first microscopic theories are the pioneering
works by Bloch [32], Redfield [33] and Fano [34] on the
relaxation of dissipative spin systems subject to weak ex-
ternal magnetic fields. Common to these early works are
the simplifying assumptions of a Markovian bath and of a
weak interaction between the system and the bath. These
assumptions lead to Markovian equations of motion for
the RDM which can be solved in lowest order Born ap-
proximation. However, the Markov approximation for the
case of open quantum systems weakly coupled to their
environments may break the positivity of the reduced dy-
namics. It has been shown [35] that the weak-coupling
Markovian equations of motion (Redfield equations) are
a consistent approximation to the reduced dynamics only
if supplemented by a slippage in the initial conditions.
As already shown by Argyres and Kelley in 1964 [36],
who started from the Liouville equation of motion for the
global system, the description of the full time evolution
of the reduced system generally involves the solution of
non-Markovian equations of motion.

The problem of environment-induced decoherence has
found attention in different contexts [16]. A theme of top-
ical interest is the suppression of quantum coherence in
magnetic grains or of a giant spin coupled to a phonon
or spin bath environment [37]. Here, the case in which
decoherence originates from the coupling to a harmonic
thermal bath is considered.

In Section 2 we introduce the driven spin-boson model
and the relevant dynamical quantities. In Section 3.1 we
derive the exact formal solution for the RDM, and in Sec-
tion 3.2 we obtain a set of exact integro-differential rela-
tions among the elements of the RDM. General features
of the reduced dynamics, as well as of nonequilibrium
correlation functions, are outlined in Section 3.3. In Sec-
tion 4 we discuss several useful analytical approximations
for the reduced dynamics, and in Section 5 we draw our
conclusions.

2 The driven spin-boson system

To start with, we describe the externally driven spin-boson
Hamiltonian H(t) = HTSS + Hext(t) + HB + HSB. The
first term characterizes the isolated two-state system. It is
conveniently written in the pseudospin form

HTSS = − 1
2~(∆0σx + ε0σz). (2.1)

We choose basis states |R〉 (right) and |L〉 (left) as eigen-
states of σz with eigenvalues +1 and −1, respectively. In
the discrete representation, the position operator q is re-
lated to σz by q = 1

2σzd, with d being the spatial distance
between the localized states. The interaction energy ~∆0

is the energy splitting of a symmetric (ε0 = 0) TSS due
to quantum tunneling. The term Hext(t) describes the in-
teraction with external time-dependent fields. To be gen-
eral, we introduce couplings to external fields which mod-
ulate the asymmetry energy between the two wells and the
coupling energy between the localized states [18].

The general Hamiltonian for the driven TSS reads

HTSS +Hext(t) = − 1
2~[∆(t)σx + ε(t)σz ]. (2.2)

Here, ∆(t) and ε(t) may or may not be periodic, depend-
ing on the characteristics of the driving fields. Finally,
the thermal bath is an ensemble of harmonic oscillators,
HB =

∑
i[ p

2
i /2mi + miω

2
i x

2
i /2], and we consider bilinear

couplings that are sensitive to the TSS position and to a
collective bath coordinate X describing the bath polariza-
tion energy, HSB := −σzX/2, where X = d

∑
i cixi . The

time-dependent spin-boson Hamiltonian reads

H(t) = − 1
2~[∆(t)σx + ε(t)σz ]− 1

2σzX +HB. (2.3)

In this model all the bath influence is captured by the
spectral density J(ω) = (π/2)

∑
i(c

2
i /miωi)δ(ω − ωi). We

assume a power-law form with an exponential cutoff,

J(ω) = (2π~/d2)αsω̃1−sωs exp(−ω/ωc). (2.4)

Here, αs is a dimensionless coupling constant, and ω̃ a
reference frequency. The case s = 1 describes an Ohmic
bath coupling. We now study the RDM of the model (2.3).

2.1 The reduced density matrix of the driven
spin-boson system

We wish to compute the RDM ρ(t) = TrB{W (t)} of the
driven damped TSS, where W (t) is the density matrix of
the global system. We assume for the global system at
time t0 = 0 the product initial state W (0) = ρ0WB. Here
WB is the canonical density matrix of the bath, WB =
e−βHB/Tr {e−βHB} (β = 1/kBT ), while the TSS has been
suddenly prepared in the general RDM state

ρ0 = 1
2I + 1

2P0σz + aσx + bσy

=
(

pR a− ib
a+ ib pL

)
.

(2.5)
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Here, P0 := pR − pL, where pR and pL = 1 − pR are
the probabilities to find the particle in the right and left
well, and a, b are the coherences. In the second form, the
RDM ρσ,σ′(t = 0) is written in the eigenstate basis of
σz . With a, b real, the condition Tr ρ2 ≤ 1 leads to the
constraint a2 + b2 ≤ pRpL. Knowledge of ρ(t) at times
t > 0 enables us to calculate the expectation value of every
observable relevant for the TSS. The pseudospin form with
matrices σj and I reads ρ(t) = I/2 +

∑
i=x,y,z〈σi〉tσi/2,

where 〈σi〉t := Tr {ρ(t)σi}, yielding

〈σz〉t = ρ1,1(t)− ρ−1,−1(t),
〈σx〉t = ρ1,−1(t) + ρ−1,1(t), (2.6)
〈σy〉t = i[ρ1,−1(t)− ρ−1,1(t)].

The diagonal elements ρ−1,−1 and ρ1,1 are the popula-
tions, and the off-diagonal elements ρ−1,1, ρ1,−1 are the
coherences. The position expectation value

〈σz〉t := P (t) = Tr{ρ(t)σz} = Tr{σz(t)ρ0} (2.7)

provides central information on the dynamics of the TSS.
For adiabatically varying driving fields, the difference N(t)
in the population of the energy levels is

N(t) := cos[θ(t)] 〈σz〉t − sin[θ(t)] 〈σx〉t, (2.8)

where tan θ = −∆/ε. In particular, N(t) coincides with
〈σz〉t for the case of a symmetric, undriven TSS.

We label the off-diagonal and diagonal states of the
RDM by ξ = ±1 and η = ±1, respectively, and introduce
the conditional RDM propagators P (µ, t;µ0, t0) from the
initial state µ0 at time t0 to the final state µ at time t,
where µ, µ0 = η or ξ. Then, the expectation value of the
position is expressed as

〈σz〉t =
∑
η=±1

η [pRP (η, t; η0 = 1, 0)

+pL P (η, t; η0 = −1, 0)

+(a− ib)P (η, t; ξ0 = 1, 0)

+(a+ ib)P (η, t; ξ0 = −1, 0)].

(2.9)

Similarly, the coherence expectation value reads

〈σx〉t =
∑
ξ=±1

[pRP (ξ, t; η0 = 1, 0)

+pL P (ξ, t; η0 = −1, 0)

+(a− ib)P (ξ, t; ξ0 = 1, 0)

+(a+ ib)P (ξ, t; ξ0 = −1, 0)].

(2.10)

In the absence of driving and dissipation, the RDM can
easily be evaluated. One finds

〈σz〉t = (pR − pL)
[ ε20
ν2

0

+
∆2

0

ν2
0

cos(ν0t)
]

(2.11)

+2a
∆0ε0
ν2

0

[1− cos(ν0t)] − 2b
∆0

ν0

sin(ν0t),

〈σx〉t = (pR − pL)
ε0∆0

ν2
0

[
1− cos(ν0t)

]
(2.12)

+2a
[∆2

0

ν2
0

+
ε20
ν2

0

cos(ν0t)
]

+ 2b
ε0
ν0

sin(ν0t),

〈σy〉t = − 1
∆0

d
dt
〈σz〉t, (2.13)

where E0 = ~ν0 with ν0 = (∆2
0 + ε20)1/2 is the energy

splitting. As expected, N is independent of t for any ini-
tial state, N = (pR−pL)ε0/ν0 +2a∆0/ν0. By virtue of the
expressions (2.11-2.13), the evolution for different initial
preparations can be discussed. In the standard prepara-
tion, the TSS is set up at time t0 = 0 in a (localized)
eigenstate of σz , in particular when the tunneling dynam-
ics is investigated. We then have pR = 1 (or pL = 1) and
a = b = 0. After the system is released, 〈σz〉t and 〈σx〉t
will undergo quantum coherent oscillations with frequency
ν0. In contrast, when the system is prepared in the ground
state, we have pR−pL = ε0/ν0, 2a = ∆0/ν0, and b = 0. In
this case is N(t) = 1, 〈σz〉t = ε0/ν0, and 〈σx〉t = ∆0/ν0

for all t, and hence there is no dynamics. Beyond these
limiting cases, one can think of other preparations. The
maximum amplitude of the oscillations is reached when
the system is prepared in an eigenstate of σz .

In the presence of driving and dissipation, the quan-
tum coherent motion described by equations (2.11-2.13)
is modified. Let us now investigate these modifications.

3 Path-integral solution for the RDM

3.1 Exact formal solution

For the model (2.3), the trace over the bath degrees of free-
dom can be performed exactly. The RDM is then written
in terms of the spin path σ(t) = 2q(t)/d as

ρσ,σ′(t) =
∑
σ0,σ

′
0

∫
Dσ
∫
Dσ′A[σ]A∗[σ′]F [σ, σ′] ρσ0,σ

′
0
(t0).

The double spin path sum runs over all possible interme-
diate spin states ±1, and the outer states are as indicated.
The quantity A[σ] is the probability amplitude of the TSS
to follow the path σ(t′) in the absence of fluctuating forces,
and F [σ, σ′] is the Feynman-Vernon influence functional
describing the environmental influences [38]. It is conve-
nient to introduce the linear combinations

ξ(t′) = 1
2 [σ(t′)− σ′(t′)] , η(t′) = 1

2 [σ(t′) + σ′(t′)].
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Fig. 1. Generic paths of class A and B contributing to the
expectation value 〈σz〉t. Paths of class A start and end in a
sojourn state (straight line). Paths belonging to class B start
in a blip state (curly line) and end in a sojourn state.

We then obtain F [σ, σ′]→ F [η, ξ] = expΦ[η, ξ] with

Φ[η, ξ] =
∫ t

t0

dt′
∫ t′

t0

dt′′
[
ξ̇(t′)Q′(t′ − t′′)ξ̇(t′′)

+iξ̇(t′)Q′′(t′ − t′′)η̇(t′′)
]

− ξ(t)
∫ t

t0

dt′′
[
Q′(t− t′′)ξ̇(t′′) + iQ′′(t− t′′)η̇(t′′)

]
− ξ(t0)

[
ξ(t)Q′(t− t0)−

∫ t

t0

dt′ξ̇(t′)Q′(t′ − t0)
]

− iη(t0)
[
ξ(t)Q′′(t)−

∫ t

t0

dt′ξ̇(t′)Q′′(t′)
]
,

where Q(t) = Q
′
(t) + iQ

′′
(t) is given by

Q(t) =
d2

~π

∫ ∞
0

dω
J(ω)
ω2

(3.1)

×
{

coth
(~ωβ

2

)(
1− cos(ωt)

)
+ i sin(ωt)

}
.

We have η(t′)ξ(t′) = 0. The periods the system spends in a
diagonal state, η(t′) = ±1, are referred to as sojourns. We
have η = +1 for the state ρ1,1, and η = −1 for ρ−1,−1. The
periods in which the system is off-diagonal , ξ(t′) = ±1,
have been dubbed blips [14,16]. We put ξ = 1 for the state
ρ1,−1, and ξ = −1 for the state ρ−1,1.

We begin with studying 〈σz〉t. Consider first the case
where the system is initially and finally in a sojourn state
(Fig. 1, top). We refer to the corresponding paths as class
A. A general double path of class A with 2n transitions
at flip times tj , j = 1, 2, .., 2n has n + 1 sojourns and n
blips. The influence function for this path reads

Φ(2n) = HA
n + i

n∑
j=1

j−1∑
k=0

ξjηkX
A
j,k,

HA
n = −

n∑
j=1

Q′2j,2j−1 −
n∑
j=2

j−1∑
k=1

ξjξk Λ
A
j,k,

(3.2)

whereQj,k := Q(tj−tk), t2n+1 ≡ t. The term HA
n contains

the intrablip and interblip correlations, and ImΦ(2n) all

blip-sojourn correlations. We have for k > 0

ΛAj,k = Q
′

2j,2k−1 +Q
′

2j−1,2k −Q
′

2j,2k −Q
′

2j−1,2k−1,

XA
j,k = Q

′′

2j,2k+1 +Q
′′

2j−1,2k −Q
′′

2j,2k −Q
′′

2j−1,2k+1.

The correlation term involving the initial sojourn, XA
j,0,

keeps track of the particular initial preparation [16]. When
the TSS is suddenly prepared in the state ρ0, the bath is
in the canonical state WB, resulting in the correlations of
the initial sojourn with the blip j

XA
j,0 = Q

′′

2j,1 −Q′′2j−1,1 +Q
′′

2j−1,0 −Q
′′

2j,0.

In contrast, when the TSS has been constrained in the
state η0 for a long period before it is released, the bath is
in the shifted canonical state W̃B = WB exp(η0βX/2) at
t = 0. Then we have XA

j,0 → X̃A
j,0 = Q

′′

2j,1 −Q′′2j−1,1.
All paths of class B start in a blip and end in a sojourn

state after an odd number of steps (cf. Fig. 1, bottom).
The corresponding influence function with n blips reads

Φ(2n−1) = HB
n + i

n∑
j=2

j−1∑
k=1

ξjηkX
B
jk,

HB
n = −

n−1∑
j=0

Q′2j+1,2j −
n∑
j=2

j−1∑
k=1

ξjξk Λ
B
jk.

(3.3)

The division of the correlations is as for class A. We have

ΛBj,k = Q
′

2j−1,2k−2 +Q
′

2j−2,2k−1

−Q′2j−1,2k−1 −Q
′

2j−2,2k−2,

XB
j,k = Q

′′

2j−1,2k +Q
′′

2j−2,2k−1 −Q
′′

2j−1,2k−1 −Q
′′

2j−2,2k.

Finally, the sum over histories of paths is represented (i)
by the sum over all possible numbers of steps, (ii) by the
integrations over the corresponding flip times {tj}, and
(iii) by the sum over all possible arrangements of the blips
{ξj = ±1} and sojourns {ηj ± 1}. For the time integrals
and the associated transition amplitudes, we introduce the
compact notation∫ t

t0

Dn{tj} · · · =
∫ t

t0

dtn
∫ tn

t0

dtn−1 . . .

∫ t2

t0

dt1δn{tj} · · · ,

δn{tj} =
n∏
j=1

∆(tj).

The sum over the intermediate diagonal states can eas-
ily be performed. This leads to modified bias factors and
influence functions. The influence of the time-dependent
biasing forces is represented by the factors (i = A,B)

C
(s)
n,i = cosφin , C

(a)
n,i = sinφin, (3.4)

φAn =
n∑
j=1

ξjζ(t2j , t2j−1), φBn =
n∑
j=1

ξjζ(t2j−1, t2j−2),
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where ζ(t, t′) =
∫ t
t′ dt

′′ε(t′′). The superscript (s/a) labels
terms symmetric/antisymmetric in the bias. The dissipa-
tive influences are described by the influence functions

F
(+)
n,A = exp(HA

n )
n−1∏
k=0

cosχAn,k, F
(−)
n,A = F

(+)
n,A tanχAn,0,

F
(+)
n,B = exp(HB

n )
n−1∏
k=1

cosχBn,k, (3.5)

in which the phases χin,k =
∑n
j=k+1 ξjX

i
j,k describe the

sojourn-blip correlations.
Next, we introduce the partial expectation values

P
(s)
1 (t) := 1

2Tr {σz(t)σz}, P
(a)
1 (t) := 1

2Tr {σz(t)},
P

(s)
2 (t) := 1

2Tr {σz(t)σy}, P
(a)
2 (t) := 1

2Tr {σz(t)σx},

given in terms of the conditional propagators as∑
η=±1

η P (η, t; η0, 0) = η0 P
(s)
1 (t) + P

(a)
1 (t),∑

η=±1

η P (η, t; ξ0, 0) = +iξ0P
(s)
2 (t) + P

(a)
2 (t).

(3.6)

Substituting the forms (3.6) into equation (2.9), we obtain
for the general initial state (2.5) the position expectation
as

〈σz〉t = (pR − pL)P (s)
1 (t) + P

(a)
1 (t)

+2aP (a)
2 (t) + 2bP (s)

2 (t). (3.7)

Collecting the various weight factors for the double spin
path, we find the exact formal series

P
(s)
1 (t) = 1 +

∞∑
n=1

(
−1

2

)n∫ t

0

D2n{tj}
∑
{ξj}

F
(+)
n,AC

(s)
n,A,

P
(a)
1 (t) = −

∞∑
n=1

(
−1

2

)n∫ t

0

D2n{tj}
∑
{ξj}

F
(−)
n,AC

(a)
n,A,

P
(a)
2 (t) = −

∞∑
n=1

(
−1

2

)n∫ t

0

D2n−1{tj}
∑
{ξj}

ξ1F
(+)
n,BC

(a)
n,B ,

P
(s)
2 (t) =

∞∑
n=1

(
−1

2

)n∫ t

0

D2n−1{tj}
∑
{ξj}

F
(+)
n,BC

(s)
n,B .

The sum
∑
{ξj} is over the 2n possible states for the n

blips included in F
(±)
n,A and F

(±)
n,B .

The initial condition 〈σz〉t=0 = pR − pL is provided
by the first term in equation (3.7). The residual terms
are contributing for times t > 0 only. In the special case
a = b = PL = 0, equation (3.7) reduces to the form P (t) =
P

(s)
1 (t) + P

(a)
1 (t), discussed in reference [14].

We refrain from writing down the corresponding se-
ries expressions for the coherences. We see from equa-
tion (2.10) that they involve the influence functional of

those paths which start from a diagonal or off-diagonal
state of the RDM and all end in an off-diagonal state.
The explicit derivation for the standard initial prepara-
tion pL = a = b = 0 is given in reference [39].

Using [H,σz ]− = i∆σy, we find for any initial state

〈σy〉t = − 1
∆(t)

d
dt
〈σz〉t. (3.8)

Thus, 〈σy〉t can be interpreted as an average tunneling
current. The exact formal solution for 〈σx〉t is more com-
plicated and is discussed below.

The above exact expression for 〈σz〉t, and the corre-
sponding ones for 〈σx〉t and 〈σy〉t have a very complex
form and cannot be evaluated analytically. Therefore one
has to resort to suitable approximations and correspond-
ing numerical computations. Before turning to approxi-
mations, we now show that the dynamics of 〈σz〉t can be
expressed in terms of an exact master equation, and 〈σx〉t
can be determined from an integral expression.

3.2 Exact master equations and integral expressions
for the RDM

The kernels of master equations are the irreducible com-
ponents. Irreducibility means that a kernel cannot be cut
into two uncorrelated pieces at an intermediate sojourn
without removing correlations across this sojourn. Follow-
ing references [29,39], we define irreducible influence func-
tions by subtracting all reducible components. We find for
paths of type i = A,B with n blips and time growing from
right to left

F̃
(±)
n,i = F

(±)
n,i −

n∑
j=2

(−1)j

×
∑

m1,··· ,mj
F

(+)
m1,i

F
(+)
m2,i
· · ·F (±)

mj ,i
δm1+···+mj ,n.

The inner sum is over all positive integers m1, ..,mj . By
definition, each subtraction involves again time-ordered
flips. In the subtracted terms, the bath correlations are
only inside of the factors F (±)

mj ,i
, and there are no correla-

tions between these factors. The n = 2 terms read

F̃
(±)
2,A (t4, t3, t2, t1) = F

(±)
2,A (t4, t3, t2, t1) (3.9)

−F (+)
1,A (t4, t3)F (±)

1,A (t2, t1)

F̃
(±)
2,B (t3, t2, t1, t0) = F

(±)
2,B (t3, t2, t1, t0) (3.10)

−F (+)
1,B (t3, t2)F (±)

1,B (t1, t0).

The flip times for the n > 2 terms can be taken from
Figure 1. Removing from class A the outer sojourns, we
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find for the symmetric (s) and antisymmetric (a) kernels

K
(s/a)
A (t, t′) = K̃

(s/a)
A (t, t′) (3.11)

+
∞∑
n=2

(−1)n−1

∫ t

t′
dt2n−1 · · ·

∫ t3

t′
dt2

×δ2n{tj}
1
2n

∑
{ξj=±1}

F̃
(+/−)
n,A C

(s/a)
n,A .

Here we have the identifications t1 = t′ and t2n = t. In
lowest order in ∆, we obtain

K̃
(s)
A (t, t′) = ∆(t)∆(t′)h(+)(t− t′) cos[ζ(t, t′)],

K̃
(a)
A (t, t′) = ∆(t)∆(t′)h(−)(t− t′) sin[ζ(t, t′)],

(3.12)

where

h(+)(t) = e−Q
′(t) cos [Q′′(t)] ,

h(−)(t) = e−Q
′(t) sin [Q′′(t)] .

(3.13)

The kernels connected with paths of class B are found by
removing from these paths the final sojourn. The antisym-
metric kernel is given by the series (we put t2n−1 = t)

K
(a)
B (t, t′) = K̃

(a)
B (t, t′) (3.14)

+
∞∑
n=2

(−1)n−1

∫ t

t′
dt2n−2 · · ·

∫ t2

t′
dt1

×δ2n−1{tj}
1
2n

∑
{ξj=±1}

ξ1F̃
(+)
n,B C

(a)
n,B .

The symmetric kernel K
(s)
B (t, t′) is found from equa-

tion (3.14) upon substituting

ξ1F̃
(+)
n,BC

(a)
n,B → F̃

(+)
n,BC

(s)
n,B. (3.15)

The lowest order is again without internal steps,

K̃
(s)
B (t, t′) = ∆(t)e−Q

′(t−t′) cos[ζ(t, t′)],

K̃
(a)
B (t, t′) = ∆(t)e−Q

′(t−t′) sin[ζ(t, t′)].
(3.16)

The full dynamics of 〈σz〉t is established by iterative suc-
cession of these kernels and an additional time integration.
Next, we take the time derivative of equation (3.7) and re-
arrange the resulting series into sequences of irreducible
clusters. The resulting series can be summed to the exact
generalized master equation (GME),

d
dt
〈σz〉t =

∫ t

0

dt′[K(a)
A (t, t′)−K(s)

A (t, t′)〈σz〉t′ ]

+2aK(a)
B (t, 0) − 2bK(s)

B (t, 0). (3.17)

To calculate the dynamics of 〈σx〉t, we introduce kernels
Y

(s/a)
A/B (t, t′) which differ from K

(s/a)
A/B (t, t′) in the influence

weights. For type A, we find (we put t1 = t′, t2n = t)

Y
(s/a)
A (t, t′) = Ỹ

(s/a)
A (t, t′)

+
∞∑
n=2

(−1)n−1

∫ t

t′
dt2n−1 · · ·

∫ t3

t′
dt2

×δ2n−1{tj}
1
2n

∑
{ξj=±1}

ξnF̃
(−/+)
n,A C

(s/a)
n,A ,

and the terms without internal steps read

Ỹ
(s)
A (t, t′) = ∆(t′)h(−)(t− t′) cos[ζ(t, t′)],

Ỹ
(a)
A (t, t′) = ∆(t′)h(+)(t− t′) sin[ζ(t, t′)].

(3.18)

The symmetric kernel of type B is given by (t2n−1 = t)

Y
(s)
B (t, t′) = Ỹ

(s)
B (t, t′) (3.19)

+
∞∑
n=2

(−1)n−1

∫ t

0

dt2n−2 · · ·
∫ t2

0

dt1

×δ2n−2{tj}
1
2n

∑
{ξj=±1}

ξ1ξnF̃
(+)
n,B C

(s)
n,B.

The antisymmetric kernel of type B, Y
(a)
B (t, t0), is

obtained from equation (3.19) upon substituting

ξ1ξnF̃
(+)
n,BC

(s)
n,B → ξnF̃

(+)
n,BC

(a)
n,B. (3.20)

In lowest order, the system stays in the same blip state,

Ỹ
(s)
B (t, t′) = e−Q

′(t−t′) cos[ζ(t, t′)],

Ỹ
(a)
B (t, t′) = e−Q

′(t−t′) sin[ζ(t, t′)].
(3.21)

The exact formal expression for 〈σx〉t is readily found as

〈σx〉t =
∫ t

0

dt′[Y (s)
A (t, t′) + Y

(a)
A (t, t′)〈σz〉t′ ]

+2aY (s)
B (t, 0) + 2bY (a)

B (t, 0).
(3.22)

Here, 〈σz〉t′ may be calculated from equation (3.7)
or equation (3.17). Thus, once we have calculated
both 〈σz〉t and the kernels Y (s/a)

i (t, t′), we obtain 〈σx〉t
by quadrature.

3.3 General features of the reduced dynamics

In the absence of time-dependent driving, the expressions
(3.17) and (3.22) are in convolutive form and can be stud-
ied by Laplace transformation. We now summarize several
general features:

(i) The equilibrium state reached asymptotically is
obtained from equations (3.17, 3.22) as

〈σz〉∞ := P∞ =
Σ(a)(0)
Σ(s)(0)

,

〈σx〉∞ = Σ
(s)
x (0) +Σ

(a)
x (0) 〈σz〉∞,

(3.23)
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with the ‘self-energies’

Σ(s/a)(λ) =
∫ ∞

0

dτe−λτK(s/a)
A (τ),

Σ
(s/a)
x (λ) =

∫ ∞
0

dτe−λτY (s/a)
A (τ).

(3.24)

The states reached asymptotically are independent of the
initial state, as expected. In the transient regime, the rele-
vant dynamical quantities are the frequency and damping
rate of the coherent oscillation, the coherent-incoherent
transition temperature T ∗, and the relaxation rate to-
wards equilibrium. All these quantities are determined by
the zeros of the equation

λ+Σ(s)(λ) = 0. (3.25)

Since equation (3.25) is independent of the particular
initial state, these quantities are universal.

(ii) Effects of the initial preparation on the dynam-
ics drastically depend on the particular initial state cho-
sen. We see from equations (3.17, 3.22) that off-diagonal
preparation effects (a, b 6= 0) die out on the time scale
τK on which the bath correlation function Q′(t) decays.
For strong enough damping, and/or high enough tempera-
ture, τK is very small compared to the time scale 1/Σ(s)(0)
for incoherent exponential relaxation into the equilibrium
state. Thus, there is a huge time domain in which effects of
the initial coherences have already died out, and the sys-
tem relaxes with the rate Γr := Σ(s)(0) to the equilibrium
state as

P (t) := 〈σz〉t = [(pR − pL)− P∞] e−Γrt + P∞. (3.26)

Thus, only track of the diagonal states of the initial RDM
is kept in the incoherent regime.

(iii) The particular initial preparation is crucial in the
underdamped regime at short-to-intermediate times. We
shall study this regime in the next section.

(iv) The above methodology for expectation values can
be extended to the computation of correlation functions
for a general factorized (i.e., nonequilibrium) initial prepa-
ration of the global system. Here we study the family of
correlation functions

C+
ij (t) := 〈σi(t)σj(0)〉 = Tr {σi(t)σjρ0}

C−ij (t) := 〈σj(0)σi(t)〉 = Tr {σi(t)ρ0σj}.
(3.27)

Upon defining ρ̃j := σjρ0, the correlation functions C±ij (t)
can be written in the form of expectation values,

C+
ij (t) = Tr {σi(t)ρ̃j},

C−ij (t) = Tr {σi(t)ρ̃
†
j}.

(3.28)

Using the form (2.5) for ρ0, we obtain the expressions

ρ̃z =
1
2
σz +

P0

2
I + iaσy − ibσx =

(
pR a− ib

−a− ib −pL

)
,

ρ̃x =
1
2
σx −

iP0

2
σy + aI + ibσz =

(
a+ ib pL

pR a− ib

)
,

ρ̃y =
1
2
σy +

iP0

2
σx − iaσz + bI =

(
b− ia −ipL

ipR b+ ia

)
.

We wish to emphasize that the {ρ̃j} are not proper density
matrices since they are not positive definite. Therefore,
the similarity of the correlation expression (3.28) with an
expectation value is only formal.

Consider now explicitly the position autocorrelation
function C±zz(t). Substituting into equation (3.28) the par-
tial probabilities P (s/a)

1/2 (t), we obtain

C±zz(t) = P
(s)
1 (t) + (pR − pL)P (a)

1 (t)

± i[ 2aP (s)
2 (t)− 2bP (a)

2 (t) ].
(3.29)

In the special case pR − pL = P∞, we find

ReC±zz(t) = P
(s)
1 (t) + P∞P

(a)
1 (t), (3.30)

originally discussed in reference [44].
Also the correlation functions C±zx(t) and C±zy(t) can be

expressed in terms of the functions P (s/a)
1 (t) and P (s/a)

2 (t).
Using the above forms for ρ̃j , we find

C±zx(t) = P
(a)
2 (t) + 2aP (a)

1 (t)

±i[2bP (s)
1 (t)− (pR − pL)P (s)

2 (t)],
(3.31)

C±zy(t) = P
(s)
2 (t) + 2bP (a)

1 (t)

±i[(pR − pL)P (a)
2 (t)− 2aP (s)

1 (t)].
(3.32)

We see that the correlation functions (3.29), (3.31), and
(3.32) are complex in general and that the probabilities
and coherences are mixing their roles. The symmetrized
correlation functions are real, and the antisymmetrized
parts χij(t) = (i/~)〈[σi(t), σj(0) ]−〉 describe the linear
response of 〈σi〉t to the δ-perturbation δH = −δ(t)fjσj ,

δ〈σi〉t = χij(t)fj .

We now turn to useful approximations.

4 Approximate treatments

4.1 The noninteracting-blip approximation (NIBA)

The noninteracting-blip approximation (NIBA) [14] has
found broad application in studies of the tunneling dy-
namics. The extension of the NIBA to the driven case is
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reviewed in reference [18]. In the NIBA, the blip-blip inter-
actions Λj,k are neglected, and also the sojourn-blip inter-
actionsXj,k are disregarded except those of neighbors, k =
j−1, and they are approximated by Xj,j−1 = Q′′(τj), with
blip length τj = t2j − t2j−1 (class A) or τj = t2j−1− t2j−2

(class B). Hence in the NIBA, the influence functions in
equation (3.5) factorize into the individual blip influence
factors. In the absence of interblip correlations, the irre-
ducible influence functions F̃ (±)

n,i are zero for n > 1. Then
the series expressions (3.11-3.18) for the irreducible ker-
nels reduce to the terms of lowest order in ∆(t), given by
the kernels without internal flips K̃(s/a)

i in (3.12, 3.16),
and Ỹ

(s/a)
i in (3.18, 3.21). Evaluation of equations (3.17,

3.22, 3.8) with these kernels gives the complete dynamics
of the spin-boson model in the NIBA.

The NIBA is appropriate at sufficiently high tempera-
ture and/or large friction, and/or large bias. For zero bias
and absence of driving, the interblip correlations in 〈σz〉t
are of order damping strength squared. Then the NIBA
for 〈σz〉t is also systematic for very weak damping down
to T = 0, whereas it is inconsistent for 〈σx〉t at low T (see
below). This has been independently confirmed numeri-
cally by a direct comparison of NIBA results with those of
the interacting-blip chain approximation (IBCA) [40], the
real-time quantum Monte-Carlo simulation method [41],
and the QUAPI method [42].

In the absence of driving, the NIBA predicts complete
destruction of the coherent motion above the crossover
temperature T ∗ [14,16,43]. Above T ∗, the effects of off-
diagonal preparation die out on a much shorter time scale
than the characteristic time scale for incoherent decay, and
therefore are irrelevant. In the NIBA, the TSS approaches
the equilibrium state

〈σz〉∞ = P∞ = tanh(~ε0/2kBT ),
〈σx〉∞ = (∆0/ε0) tanh(~ε0/2kBT ),

(4.1)

exponentially fast with the relaxation rate Σ(s)(0) = Γr,

Γr = ∆2
0

∫ ∞
0

dτh(+)(τ) cos(ε0τ). (4.2)

For weak damping and low T , the NIBA breaks down for a
biased system. We see from equation (4.1) that the NIBA
predicts at T = 0 incorrect symmetry breaking for arbi-
trarily small bias ε0, P∞ = sgn (ε0), and also a violation
of the unitarity bound 〈σx〉∞ ≤ 1.

Off-diagonal contributions in the initial state may in-
fluence the dynamics considerably in the coherent regime
T < T ∗. The related discussion is postponed after the dis-
cussion of the systematic weak-damping treatment which
is free of the NIBA’s flaws.

4.2 Systematic weak damping approximation

For weak damping, nonzero bias and low temperatures,
the bath correlations Λj,k and Xj,k 6=j−1 contribute al-
ready to terms which depend linearly on the spectral den-
sity J(ω). These correlations are dropped in the NIBA,

and therefore the NIBA breaks down in this regime. The
kernels K(s/a)

A (t, t′) and Y
(s/a)
A (t, t′) in (3.11) and (3.18)

have been studied for weak damping in references [29] and
[39], respectively. The kernels K(s/a)

B (t, t′) and Y (s/a)
B (t, t′)

are given by similar expressions. The weak-damping form
of 〈σz〉t is obtained by solving the GME (3.17) with the
related weak-damping kernels, 〈σy〉t is found from equa-
tion (3.8), and 〈σx〉t is obtained from the integral relation
(3.22). Consider now first the undriven dynamics.

4.2.1 Expectation values

In the absence of driving the GME (3.17) is in convolutive
form and is conveniently solved by Laplace transforma-
tion. Putting t0 = 0, the population is found as

P (t) = (N1 + n1) e−Γrt + (N2 + n2) cos(νt) e−Γt

+(−2b∆/ν + n3) sin(νt) e−Γt + P∞, (4.3)

with tunneling frequency ν = (∆2 + ε20)1/2, and equi-
librium value P∞ = (ε0/ν) tanh(~βν/2). The adiabat-
ically dressed tunneling coupling is in the Ohmic case,
∆ = ∆0(∆0/ωc)α/(1−α), and in the super-Ohmic case

∆ = ∆0 exp
(
− 1
π

∫ ∞
0

dω
J(ω)
ω2

)
. (4.4)

The relaxation rate Γr and dephasing rate Γ read

Γr = (∆2/2ν2)J(ν) coth(~βν/2),

Γ = Γr/2 + 2παδs,1(ε0/ν)2kBT/~.
(4.5)

The second term contributes to Γ only in the Ohmic case.
Finally, the amplitudes are

N1 = (ε0/ν)2P0 + 2aε0∆/ν2 − P∞,
N2 = (∆/ν)2P0 − 2aε0∆/ν2,

n1 = −n2 = −4bΓr∆/ν2,

n3 = (ΓrN1 + ΓN2)/ν,

(4.6)

where the ni are of linear order in the bath coupling.
The coherences are readily found upon substituting the

solution (4.3) into equation (3.22) as

〈σx〉t = (M1 +m1) e−Γrt + (M2 +m2) cos(νt) e−Γt

+[2bε0/ν +m3] sin(νt) e−Γt + 〈σx〉∞, (4.7)

with 〈σx〉∞ = (∆/ν) tanh(~βν/2), and amplitudes

M1 = (ε0∆/ν2)P0 + 2a(∆/ν)2 − 〈σx〉∞,
M2 = −(ε0∆/ν2)P0 + 2aε20/ν

2,

m1 = −m2 = 4bε0Γ/ν2

m3 = (ΓrM1 + ΓM2)/ν.

(4.8)

We gather from these results that the coherent dynamics
of P (t) = 〈σz〉t and 〈σx〉t at short-to-intermediate times



M. Grifoni et al.: Dissipation, decoherence and preparation effects in the spin-boson system 727

is strongly affected by the chosen initial state. The evolu-
tion of the population difference P (t) is shown in Figure 2
for three different initial preparations. We consider (I) a
“standard” initial state in which the system is released
from the right well (pR = 1, a = b = 0), i.e., an eigen-
state of σz , (II) a preparation of the TSS in the ground
state (pR = 1/2 + ε0/2ν; pL = 1/2 − ε0/2ν; a = ∆/2ν
and b = 0), and (III) a preparation in the excited state
(pR = 1/2 − ε0/2ν; pL = 1/2 + ε0/2ν; a = −∆/2ν and
b = 0). Figure 2 clearly shows that initial preparation in an
off-diagonal state is distinguished in the dynamics only in
the initial time domain. Effects related to an off-diagonal
preparation show up only in the short-time underdamped
dynamics. We have already noted in Section 3.3 that the
equilibrium value and the damping rate are independent
of the initial state chosen. Hence all curves approach the
same equilibrium value on the same time scale. Prepara-
tion in an eigenstate of σz gives rise to large-amplitude
damped oscillations (full curve). On the other side, when
the TLS is prepared at low T in the ground state, the ini-
tial population P0 is already close to the equilibrium pop-
ulation P∞. In this case, P (t) shows only small-amplitude
damped oscillations around the asymptotic value P∞ ≈ P0

(dashed-dotted curve). When the TSS is prepared in the
excited state, we have P0 ≈ −P∞. Then the system per-
forms small-amplitude damped oscillations superimposed
to the slow exponential relaxation towards the equilibrium
population (dashed curve).

4.2.2 Nonequilibrium correlation functions

With the weak-damping expressions (4.3-4.6) for P (t), it is
straightforward to determine the partial expectation val-
ues. We find for P (s/a)

1 (t) the forms

P
(s)
1 (t) = (ε20/ν

2) e−Γrt + (∆2/ν2) cos(νt) e−Γt

+[ ε20Γr/ν
3 +∆2Γ/ν3 ] sin(νt) e−Γt, (4.9)

P
(a)
1 (t) = P∞[ 1− e−Γrt − (Γr/ν) sin(νt) e−Γt ], (4.10)

and for the partial probabilities P (s/a)
2 (t)

P
(s)
2 (t) = −2(Γ∆/ν2) e−Γrt + 2(Γ∆/ν2) cos(νt) e−Γt

−(∆/ν) sin(νt) e−Γt, (4.11)

P
(a)
2 (t) = (ε0∆/ν

2) e−Γrt − (ε0∆/ν
2) cos(νt) e−Γt

+[ ε0∆(Γr − Γ )/ν3 ] sin(νt) e−Γt. (4.12)

Substituting these forms into equations (3.29, 3.31), and
into equation (3.32), we obtain the weak-damping expres-
sions for the correlation functions Czj(t) (j = x, y, z).

10 20 30 40

∆0t

-1

-0.5

0

0.5

1

P(t)

Fig. 2. The population P (t) := 〈σz〉t is sketched as a func-
tion of time for a standard preparation in the right state (full
curve), preparation in the ground state (dashed curve), and
preparation in the excited state (dashed-dotted curve). The
parameters chosen are α = 0.05, ωc = 30∆0, kBT = 0.05~∆0,
and ε0 = 0.05∆0.

4.2.3 Driven dynamics

Finally, let us study the effect of a monochromatic ac-field
modulating the bias energy,

ε(t) = ε0 + ε̂ cos(Ωt), ∆(t) = ∆0. (4.13)

The full dynamics can be worked out by generalizing the
methods developed for the standard preparation [18] to
the general initial state (2.5). Here we only wish to an-
swer the intriguing question: Is it possible to slow down
the bath-induced decoherence in such a way that prepa-
ration effects persist for longer times than in the absence
of driving?

Consider high-frequency driving, Ω � ∆0, ν, Γ, Γr,
and the dynamics described by the field-averaged GME
obtained from (3.17) upon substituting the field-averaged
forms K

(s/a)

i for the kernels K(s/a)
i . This is formally ob-

tained upon performing in K
(s/a)
i the substitutions

cos[ζ(t, t′)] → J0[f(t− t′)] cos[ε0(t− t′)] ≡ C(t− t′),
sin[ζ(t, t′)] → J0[f(t− t′)] sin[ε0(t− t′)] ≡ S(t− t′),

where f(t− t′) = (2ε̂/Ω) sin[Ω(t− t′)/2]. For example, the
averaged weak-damping kernel K

(s)

A takes the form

K
(s)

A (t− t′) = ∆2
0 C(t− t′)[1−Q′(t− t′)] (4.14)

+∆4
0

∫ t

t′
dt2
∫ t2

t′
dt1 S(t− t2)P(t2 − t1)S(t1 − t′)

×[Q′(t− t′) +Q′(t2 − t1)−Q′(t2 − t′)−Q′(t− t1)].

The first term represents the NIBA. In the residual con-
tribution, the term P(t2 − t1) is sandwiched between two
blips with intervals t1 − t′ and t− t2. This term describes
all possible transitions of the undamped system between
diagonal states during the period t2 − t1,

P(t− t0) = 1 +
∞∑
n=1

(−1)n
∫ t

t0

D2n{tj}
n∏
j=1

C(t2j − t2j−1).



728 The European Physical Journal B

The resulting GME is convolutive. The respective pole
condition is conveniently studied using the relation

J0

(
2ε̂
Ω

sin
Ωt

2

)
=

∞∑
n=−∞

J2
n(ε̂/Ω) cos(nΩt), (4.15)

which suggests to introduce the channel tunneling fre-
quencies ∆eff,n = Jn(ε̂/Ω)∆0, and side frequencies ε±n =
ε0 ± nΩ. The weak-damping dynamics can now be inves-
tigated by generalizing the line of reasoning proposed in
reference [29], where to lowest order in ε̂/Ω only three
effective tunneling frequencies and three side frequencies
occurred, to an infinite set of effective tunneling and side
frequencies. For small static bias ε0 � Ω, and for the
ratio ε̂/Ω chosen away from the zeros of J0(ε̂/Ω), one
finds that the dynamics behaves like for a static bias, but
with effective tunneling matrix element ∆eff,0. Because
Γr, Γ ∝ ∆2

eff,0 ≤ ∆2
0, both the dephasing rate Γ and the

relaxation rate Γr can be strongly reduced by a suitable
choice of the parameters of the driving field. The same
reasoning is applicable when an ac-field is applied which
satisfies the resonance condition ε−n = 0. In this case, when
ε̂/Ω is away from the zeros of Jn(ε̂/Ω), the decay rates
are proportional to ∆2

eff,n < ∆2
0. This implies again that

the field-averaged population difference P (t) and coher-
ence 〈σx〉t will be approximately given on a longer time
scale by

P (t) ≈ pR − pL, 〈σx〉t ≈ 2a (4.16)

than in the absence of driving. Thus, the decay of the
field-averaged RDM towards the average stationary state
can be slower than in the absence of driving.

At the zeros of Jn(ε̂/Ω) (with n determined by the
resonant or near resonance condition |ε−n | � Ω), a more
careful analysis must be performed because several terms
of the series expansion (4.15) may be relevant for the TSS
dynamics. However, the important point now is that the
decay towards equilibrium, as well as coherent tunneling,
are strongly suppressed by the ac-field. The maximum
suppression occurring at the zeros of Jn(ε̂/Ω). For a stan-
dard initial preparation (pR = 1), we recover from the first
relation in (4.16) an effect which has been termed “coher-
ent destruction of tunneling” [19]: a particle initially local-
ized in one well will remain localized over several tunneling
periods. The present results, however, are more general:
in the absence of dissipation and for parameters at the
zeros of Jn(ε̂/Ω), the ac-field acts in such a way that any
particular initial preparation is maintained. This driving-
induced effect also persists when the TSS is additionally
coupled to a thermal bath. This effect can also be studied
in the underdamped regime within the NIBA.

At this point, a more precise statement should me
made. Upon averaging over the driving field, the field-
induced oscillatory contributions about the field-averaged
dynamics are disregarded. Hence, the field-averaged dy-
namics describes the actual dynamics only well if the am-
plitude of these oscillations is small. For particular param-
eter regimes, it turns out that this approximation may well

describe the dynamics of P (t) in the presence of a high fre-
quency field, whereas the coherences may perform already
large amplitude oscillations around their mean values [46].
In this case, time-dependent corrections to the average be-
havior of 〈σx〉t, equation (4.16), are relevant.

5 Conclusions

In conclusion, we have studied the dynamics of the driven
dissipative two-state system for an arbitrary factorized ini-
tial state of the reduced density matrix. We have shown
that complete information about the reduced dynamics is
contained in the position expectation value 〈σz〉t. Namely,
〈σz〉t obeys an exact generalized master equation, and
〈σx〉t is related to 〈σz〉t by an integral relation. The other
coherence 〈σy〉t follows from 〈σz〉t by differentiation. We
have also discussed the nonequilibrium correlation func-
tions C±zj(t) = 〈σz(t)σj(0)〉. As a general feature, it turns
out that characteristic quantities of the dynamics, such
as the asymptotic expectation values, the dephasing and
relaxation rates, and the transition temperature T ∗ above
which quantum coherence is destroyed are “universal”,
i.e., do not depend on the particular initial state cho-
sen. Above T ∗, only preparation effects which are related
to a diagonal initial state of the reduced density matrix
show up in the dynamics. In contrast, below T ∗ also the
coherences of the initial RDM may have significant ef-
fects on the dynamics at short-to-intermediate times. To
study these effects, we have presented different analytical
approaches appropriate in the whole interesting temper-
ature and damping regime. In particular, we have shown
that a suitably tuned high-frequency ac-field may prolong
any dynamical effect of the particular initial preparation.
The phenomenon of driving-induced coherent suppression
of tunneling, P (t) = 1 in reference [19], turns out to be a
particular manifestation of the more general results given
here.
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